Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 11(16): 7634-7647, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698584

RESUMO

We investigated the self-assembly of block copolymers during hollow fiber membrane (HFM) fabrication by conducting in situ small angle X-ray scattering (SAXS) and ex situ scanning electron microscopy (SEM) studies. SAXS enables us to follow the structural rearrangements after extrusion at different distances from the spinning nozzle. The kinetics of the spinning process is examined as a function of the composition of block copolymer solutions and the spinning parameters. We studied the influence of the extrusion rate on the block copolymer microdomains and their self-assembly in weakly segregated and ordered solutions. The addition of magnesium acetate (MgAc2) leads to the ordering of micelles in the block copolymer solution already at lower polymer concentrations and shows an increased number of micelles with larger domain spacing as compared to the pristine solution. The SAXS data show the effect of shear within the spinneret on the self-assembly of block copolymers and the kinetics of phase separation after extrusion. It is observed that the ordering of micelles in solutions is decreased as indicated by the loss of crystallinity while high extrusion rates orient the structures perpendicular to the fiber direction. The structural features obtained from in situ SAXS experiments are correlated to the structure in the block copolymer solutions in the absence of shear and the morphologies in flat sheet and HF membranes obtained by ex situ SEM. This allows a systematic and comparative study of the effects varying the microdomain ordering within different block copolymer solutions and the formed membrane structures.

2.
ACS Appl Mater Interfaces ; 9(37): 31224-31234, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28199082

RESUMO

Nanoporous membranes with tailored size pores and multifunctionality derived from self-assembled block copolymers attract growing interest in ultrafiltration. The influence of the structure of block copolymer in the membrane casting solution on the formation of integral asymmetric isoporous block copolymer membranes using the nonsolvent induced phase separation process (NIPS) has been one of the long-standing questions in this research area. In this work we studied the principal role of the solvent on the micellization and self-assembly of asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymers by using a combination of dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Our results indicate a significant effect of the solvent selectivity on the optimal casting concentration and solution structure. In addition, morphological characterization of the resulting membranes demonstrates considerable influence of the solvent system on the ordering and uniformity of the pores and pore characteristics in the separation layer as well as porous substructure of the final membranes.

3.
Macromol Rapid Commun ; 37(5): 414-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26685710

RESUMO

A double-layer hollow fiber is fabricated where an isoporous surface of polystyrene-block-poly(4-vinylpyridine) is fixed on a support layer by co-extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope-energy-dispersive X-ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in-process H-bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double-layer hollow fiber.


Assuntos
Membranas Artificiais , Poliestirenos/química , Polivinil/química , Piridinas/química , Enxofre/química , Técnicas Eletroquímicas , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura , Porosidade , Espectrometria por Raios X
4.
Adv Mater ; 27(2): 352-5, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25413565

RESUMO

A simple way to generate isoporous membranes with tailored pore sizes is shown. Block copolymers of different compositions are blended in solution, and membranes are obtained by solution casting followed by nonsolvent-induced phase separation. This enables the preparation of integral asymmetric membranes with a defined pore size for given sets of block copolymers just by choosing the right blend composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...